• Call: +1 (858) 429-9131

“IAM user, who can write to the S3 bucket”

Here we are to educate ourselves as to what “IAM user, who can write to the S3 bucket” is, by using cloudfront distribution and S3 objects, which are of world readable.

 

1.Create a bucket in s3 my-bucket

1. Log in to the AWS Management Console

2. Click on s3 tab

3. Create a new bucket

4. Create a custom/aws bucket policy to make it world readable

Read more…

Splunk on AWS EC2 CloudSplunk

Whats is Splunk ?

Splunk is a log, monitoring and reporting tool for IT system administrators with search capabilities. It crawls logs, metrics, and other data from applications, servers and network devices and indexes it in a searchable repository from which it can generate graphs, SQL reports and alerts. Splunk can be easily set on the AWS machine archival storage as EBS volumes and periodically syncing the archive from EBS to S3 Bucket or taking EBS snapshots for backup of the logs for the future use.

Generally its hard to track the logs from the server. We do have different monitoring tools such as Nagios, Zabix, here is a new tool named Splunk, which is a kind of bigger solution for providing monitor the visibility inside all the dynamic and complex environment. For example you have an application seems to be very slow, its not because the app have some issue , its because of the lack of free memory on the server. Such kind of details can be obtained from inside the splunk server.

Why do we go for Splunk ?

In auto-scaled where the instances are running under load-balancer scenarios, the servers gets scale up and down, and also there are some situations like some instance gets terminated without any alert. During this situation it will be good to get the login sessions during the server-down state, also the server access logs, so that we can track the reason for the server down. Managing logs on server is really hard, and also the logs will be available on different location. Inorder to address this problem, here we have setup Splunk to listen on a TCP port for any network traffic passes all others servers log to this host, then you will have a centralized, indexed log repository for all of your services.

Here i will guide you on deploying the splunk on the AWS EC2 and configuring splunk forwarder on the remote machine. Splunk is very flexible and is easy to install on any servers. You can select the appropriate hardware capacity planning for your Splunk deployment from here.

Once you have installed the Splunk server , follow the steps given below to start the app:

Now start the Splunk using the command given below:
[NOTE: The here Splunk is installed in /opt location]

/opt/splunk/bin/splunk start

Now you can access the Splunk web UI using the URL given below:

http://domain.com:8000

The Splunk need to be configure in such a way that it should be able to receive the data from the remote machine. For this you will need is to follow the following steps:

1. Login to Splunk WebUI eg. http://10.10.10.35:8000
2. Go to Manager –> Forwarding and receiving –> Receive data
3. Click on New Button and add default port i.e. 9997
4. Click on save button to save the settings.
NOTE: Make sure that the port is opened for the server to accept the data from the remote machine.

Next you will need to install Splunk forwarder on the remote machine. Once you have installed the forwarder start the app as shown below:

/opt/splunk/bin/splunk start

Then enable the forwarder using the command and restart the Splunk app.

./splunk enable app SplunkLightForwarder -auth
Splunk username: admin
Password: changeme
./splunk add forward-server 10.10.10.35:9997 -auth admin
./splunk restart

Now after few minutes you can see the Splunk dashboard indexes all it logs on the realtime dashboard.

Generally in Splunk deployment , we have a deployment server which pushes the configuration on to the deployment client, grouped into server class. The Splunk deployment server is a centralized manager which manages several splunk instances known as deployment client. The deployment client is the Splunk instance installed on the remote machine and parse the log on to the Splunk deployment server.

 

 

The Splunk generally collects the data from the remote machine which contain  the machine-to-machine and also from human-to-machine interaction. With these collected data it indexes to the engine and generates the reports and also drives alert. The email alert can be configured for the specific conditions like. For example we can configure the alert mail when it finds any log containing the error messages. The Splunk will access all these large volume of data and also provides the visibility and intelligence to IT and data ware house. And also will be able to perform the real-time and historic analysis of all the bulk data from the remote machine.

Its easy to use, also to install and also easier deploy method make this application different from others. The Splunk will be very useful for the developer team for finding and fixing the bugs and also helps to provide real time insights.

Achieving HIPAA on AWS / EC2 with Windows Server 2008

When you are creating a HIPAA compliant system on cloud service like AWS / EC2 / S3, you have to carefully examine the different levels of data security provided by the Cloud Service provider

At a minimum level, the following should be ascertained:

i) Where is the Cloud provider’s data center physically located. In some countries, HIPAA restricts Protected Health Information ( PHI ) to be stored on servers located outside of the country.

ii) Whether the cloud provider contractually obligated to protect the customer’s data at the same level as the customer’s own internal policies?

iii) Cloud provider’s Backup and Recovery policies

iv) What are the provider’s policies on data handling/management and access control? Do adequate controls exist to prevent impermissible copying or removal of customer data by the provider, or by unauthorized employees of the company?

v) What happens to data when it is deleted? This is very important as customers will be storing data on virtual Machines. Also What happens to cloud hardware when the hardware is replaced?

In this blog we are only looking at the different security levels to be taken by the application developer to make sure that a web application built on AWS / EC2 using Windows Server 2008 / .NET / MSSQL / IIS 7 / is HIPAA compliant. The basic requirement is to encrypt all the data at rest and transit

1. Encrypting Data in transit between the user ( clients ) and the server ( Webserver )

SSL over HTTP ( HTTPS )

Steps used to Implement SSL on IIS are the following:

[bash]
1.Open IIS Manager.
2.Click on the server name.
3.Double-click the “Server Certificates” button in the “Security” section
4.Click on self-signed certificate
5.Enter certificate name and click ok
6. Select the name of the server to which the certificate was installed.

7. From the “Actions” menu (on the right), click on “Bindings.” This will open the “Site Bindings” window

8. In the “Site Bindings” window, click “Add” This will open the “Add Site Binding” window

9. Under “Type” choose https. The IP address should be the IP address of the site , and the port over which traffic will be secured by SSL is usually 443. The “SSL Certificate” field should specify the certificate that was installed in step 5.

10.Click “OK.” . SSL is now installed .
[/bash]

2 ) Encrypting Data at Rest ( Document Root )

EFS with IIS

You can use EFS ( Encrypted File System ) in Windows 2008 Server to automatically encrypt your data when it is stored on the hard disk.

Encrypt a Folder:

[bash]
1. Open Windows Explorer.
2. Right-click the folder that you want to encrypt , and then click Properties.
3. On the General tab, click Advanced.
4. Under Compress or Encrypt attributes, select the Encrypt contents to secure data check box and then click OK.
5. Click OK.
6. In the Confirm Attribute Changes dialog box that appears, use one of the following steps:
i) If you want to encrypt only the folder, click Apply changes to this folder only, and then click OK.
ii) If you want to encrypt the existing folder contents along with the folder, click Apply changes to this folder, subfolders and files, and then click OK.
[/bash]

The folder becomes an encrypted folder. New files that you create in this folder are automatically encrypted


3 ) Encrypting MSSQL Database ( Data at Rest )

TDE ( Transparent Data Encryption )

TDE is a new feature inbuilt in MSSQL Server 2008 Enterprise Edition . Data is encrypted before it is written to disk; data is decrypted when it is read from disk. The “transparent” aspect of TDE is that the encryption is performed by the database engine and SQL Server clients are completely unaware of it. There is absolutely no code that needs to be written to perform the encryption and decryption .So there is no need for changing any code ( Database Queries ) in the Application .

STEPS

i) Create a Master Key

A master key is a symmetric key that is used to create certificates and asymmetric keys. Execute the following script to create a master key:

[bash]
USE master;
CREATE MASTER KEY
ENCRYPTION BY PASSWORD = ‘Pass@word1’;
GO
[/bash]

ii)Create Certificate

Certificates can be used to create symmetric keys for data encryption or to encrypt the data directly. Execute the following script to create a certificate:

[bash]
CREATE CERTIFICATE TDECert
WITH SUBJECT = ‘TDE Certificate’
GO
[/bash]

iii) Create a Database Encryption Key and Protect it by the Certificate

[bash]
1.Go to object explorer in the left pane of the MSSQL SERVER Management Studio
2.Right Click on the database on which TDE Requires
3.Click Tasks and Navigate to Manage Database Encryption
4. Select the encrytion algorithm (AES 128/192/256) and select the certificate you have created
5.Then Mark the check Box for Set Database Encryption On
[/bash]

You can query the is_encrypted column in sys.databases to determine whether TDE is enabled for a particular database.

[bash]
SELECT [name], is_encrypted FROM sys.databases
GO
[/bash]


4 ) Encrypting Data in transit between the Webserver and the MSSQL Database

MSSQL secure connection using SSL

i) Creating a self-singned cert using makecert
[bash]
makecert -r -pe -n “CN=YOUR_SERVER_FQDN” -b 01/01/2000 -e 01/01/2036 -eku 1.3.6.1.5.5.7.3.1 -ss my -sr localMachine -sky exchange -sp “Microsoft RSA SChannel Cryptographic Provider” -sy 12 c:\test.cer
[/bash]

ii) Install this cert

[bash]
Copy c:\test.cer into your client machine, run c:\test.cer from command window, select “Install Certificate”. -> click “Next” -> select “Place all certificates in the following store” –> click “Browser” -> select “Trusted Root Certification Authorities” -> select OK and Finish
[/bash]

iii) Open SQL Server Configuration Manager

[bash]
Expand SQL Server Network Configuration, right-click “Protocols for MSSQLSERVER” then click “properties”. On the “Certificate” tab select the certificate just installed . On the “Flags” tab, set “ForceEncryption” YES.
[/bash]

Now SSL is ready to be used on the server. The only modification needed in the .NET code is connection string. It will be

[bash]
connectionString=”Data Source=localhost;Initial Catalog=mydb;User ID=user1;Password=pas@123;Encrypt=true;TrustServerCertificate=true”
[/bash]